4. Конструктивный расчет механизма станка

4.1. Расчет ременной передачи

4.1.1. Исходные данные:

вид передачи клинор	еменная
частота вращения ведущего шкива d_1 (частота вращения	
электродвигателя $n_{\rm дв}$), мин $^{-1}$	1425
частота вращения ведомого шкива d_2 , мин $^{-1}$	1000
мощность электродвигателя (на ведущем шкиве) $N_{\rm дв}$, кВт	11
4.1.2 Dogwood woodowgo woodowood nowowood woodowood	

4.1.2. Расчет момента, передаваемого ременной передачей

Рассчитываем передаваемый момент, Н-м:

$$T_1 = \frac{N_{\text{дB}}}{\omega_1} 10^3, \tag{4.1}$$

где $N_{\rm дв}$ — мощность электродвигателя, кВт; ω — окружная скорость, ${\rm c}^{-1}$.

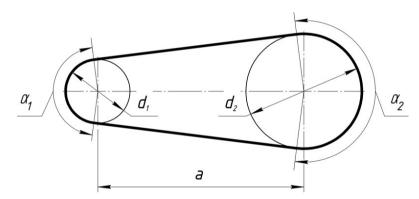


Рисунок 4.1 — Расчетная схема ременной передачи

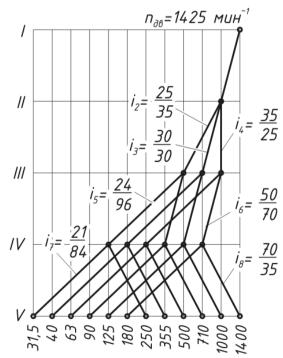


Рисунок 4.2 — График частот вращения

Окружная скорость, c^{-1} :

$$\omega_{_{1}} = \frac{\pi \cdot n_{_{\text{JB}}}}{30}. \tag{4.2}$$

Для принятых исходных данных:

$$\omega_{1} = \frac{\pi \cdot 1425}{30} = 149,23 \,\mathrm{c}^{-1} \tag{4.3}$$

Тогда:

$$T_1 = \frac{11}{149 \ 23} 10^3 = 73.7 \ \text{H} \cdot \text{m} \tag{4.4}$$

4.1.3. Расчет сечения ремня

Определяем сечение ремня в зависимости от передаваемого момента по [1, с. 16, таблица 2.2.1].

Для этого предварительно вычисляем расчетный передаточный момент, $H\cdot m$:

$$T_{1p}=T_1\cdot C_p$$

где T_1 — передаваемый момент, Н·м; C_p — коэффициент, учитывающий динамичность нагружения передачи и режим ее работы [1, с. 16, таблица 2.2.2]. $C_p = 1.5$ — для среднего режима работы и при трехсменной работе передачи, электродвигатель переменного тока общепромышленного применения [там же]. Тогда

$$T_{1p} = T_1 \cdot C_p = 73, 7 \cdot 1, 5 = 110,6 \text{ H} \cdot \text{M}$$

Для T_{1p} = 110,6 H·м по таблице 2.2.1 **принимаем ремень нормального** сечения B, со следующими параметрами:

передаваемый момент $50...150~\text{H}\cdot\text{M}$ минимальный диаметр ведущего шкива $d_{1\text{min}}=125~\text{мм}$ количество ремней в передаче z=2...6, принимаем z=3 ремня

Табл. 2.2.1 - Размеры и параметры поперечных сечений клиновых ремней

ГОСТ 1284.1-89. ГОСТ 20889-88, ТУ 38-40534-75

	начение ения	T_{1p} ,	$d_{1 \text{ min}}$,	Колнч. ремней	Размеры, мм						
	RHM	Н∙м	мм	z, mt.	<i>B</i> p	В	H_{p}	Н			
ые	Z(O)	<30	63	2÷4	8,5	10	6	2,1			
НЧ	\boldsymbol{A}	15÷60	90	2 ÷ 5	11,0	13	8	2,8			
рмальн сечения	$B(\mathcal{E})$	50 ÷ 150	125	2÷6	14,0	17	11	4,0			
Нормальные сечения	C(B)	120 ÷ 600	200	2 ÷ 7	19,0	22	14	4,8			
H H	$D(\Gamma)$	450 ÷ 2400	315	2÷7	27,0	32	19	6,9			
	УО	<150	63	2÷4	8,5	10	8	2,0			
ис Ни	УA	90÷400	90	2÷4	11,0	13	10	2,8			
Узкие сечения	УБ	300 ÷ 2000	140	2÷5	14,0	17	13	3,5			
ر, ع	УВ	>1500	224	2÷5	19,0	22	18	4.8			

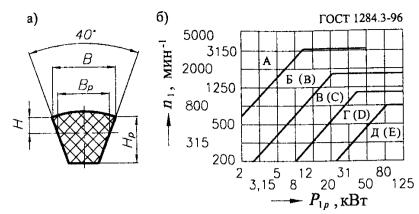


Рисунок 4.3 — Параметры поперечных сечений (*a*) и диаграмма их выбора (*б*) для клиновых ремней нормального сечения

Табл. 2.2.2 - Значения коэффициента C_P , учитывающего динамичность нагружения передачи и режим ее работы

ΓΟCT 1284.3-96

Режим	C_P при числе смен работы передачи													
	1	2	3	1	2	3	1	2	3					
работы		I			II			III						
Легкий	1,0	1,1	1,4	1,1	1,2	1,5	1,2	1,4	1,6					
Средний	1,0	1,2	1,5	1,2	1,4	1,6	1,3	1,5	1,7					
Тяжелый	1,2	1,3	1,6	1,3	1,5	1,7	1,4	1,6	1,9					
Очень тяжелый	1,3	1,5	1,7	1,4	1,6	1,8	1,5	1,7	2,0					

В табл. 2.2.2:

- I Электродвигатели переменного тока общепромышленного применения, электродвигателн постоянного тока шунтовые, турбнны;
- II Электродвигатели постоянного тока компаундные, ДВС при $n \ge 600$ мнн⁻¹;
- III Электродвигатели переменного тока с повышенным пусковым моментом, электродвигатели постоянного тока сериесные, ДВС при n < 600 мин⁻¹.

4.1.4. Расчет диаметра ведомого шкива

По таблице 2.2.4 принимаем стандартный диаметр ведущего шкива $d_1 = 125 \text{ мм}.$

Рассчитываем передаточное отношение i ременной передачи (по графику частот вращения, рисунок 4.2):

$$i = \frac{n_{\text{II}}}{n_{\text{I}}} = \frac{n_{\text{II}}}{n_{\text{IR}}} = \frac{1000}{1425} = 0,70 \tag{4.5}$$

Принимаем коэффициент скольжения передачи $\eta = 0.95$.

Табл. 2.2.4 - Расчетные диаметры шкивов d клиноременных передач гост 20889-88

40, 45, 50,	56, 63, 71, 80, 90,	100, 112, 125, 140, 10	50, 180, 200
224, 250, 280), 315, 355, 400, 450,	500, 560, 630, 710, 800	, 900, 1000

Табл. 2.2.5 - Коэффициент, учитывающий число ремней C_k гост 1284.3-96

Число ремней	2	3	4	5÷6	Св. 6
C_k	0,80 ÷ 0,85	$0,70 \div 0,82$	$0,76 \div 0,80$	$0,75 \div 0,79$	0,75

Далее определяем минимальный расчетный диаметр ведомого шкива, мм:

$$d_2 = \frac{d_1 \cdot \eta}{i},\tag{4.6}$$

где η — коэффициент скольжения (η = 0,95); i — передаточное отношение передачи (по графику частот вращения).

$$d_2 = \frac{125 \cdot 0.95}{0.70} = 169,64 \text{ MM}$$

Уточняем диаметр ведущего шкива по таблице 2.2.4 ($d_2 \le d_2$ '). Принимаем его $d_2 = 160$ мм.

Тогда действительное передаточное отношение проектируемой передачи

$$i = \frac{d_1}{d_2} \eta = \frac{125}{160} 0,95 = 0,74$$

4.1.5. Минимальное межосевое расстояние, мм

$$a_{min} = 0.55(d_1 + d_2) + H_p$$
, (4.7)

Рассчитываем:

$$a_{\min} = 0.55(125 + 160) + 11 = 167,75 \text{ MM}$$

Так как должно быть $(a>a_{\min})$, увеличиваем межосевое расстояние в два раза: $a=2a_{\min}=2\cdot167,75=335,5$ мм

4.1.6. Расчетная длина ремня, мм

$$L'_{p} = 2a + 0.5\pi(d_{1} + d_{2}) + \frac{0.25(d_{2} - d_{1})^{2}}{a}.$$
 (4.8)

$$L'_p = 2 \cdot 335,5 + 0,5\pi(125 + 160) + \frac{0,25(160 - 125)^2}{335,5} = 1119,6 \text{ mm}$$

Действительная (стандартная) длина ремня должна быть $L_p \geq L'_p$. По таблице 2.2.6 принимаем $L_{\rm p}=1120$ мм

Табл. 2.2.6 - Длины ремней $L_{\rm p}$ и значения коэффициента $C_{\scriptscriptstyle L}$, учитывающего длину ремня

ГОСТ 1284.1-89, ГОСТ 1284.3-96

<i>L</i> _p ,	400	450	500	560	630	710	800	900	1000	1120	1250	1400	1600	1800	2000	2240	2500	2800	3150	3550	4000	4500	5000
0	0,49	0,53	0,58	0,63	0,68	0,73	0,78	0,84	0,88	0,93	0,98	1,03	1,08	1,13	1,18	1,23	1,27					-	
A				0,71	0,74	0,77	0,80	0,83	0,86	0,89	0,92	0,95	0,98	1,02	1,04	1,07	1,10	1,13	1,16	1,20	1,23		
Б								0,80	0,82	0,85	0,87	0,90	0,93	0,95	0,98	1,00	1,02	1,05	1,07	1,10	1,13	1,15	1,17
B	C	= f (сече	ние т	земн	я Т.,)							0,85	0,87	0,90	0,92	0.94	0,97	0,99	1.01	1.04	1.06
Γ					II	, p	,							Í	,	,	ĺ	•	0,89	0,91	0,93	0,95	0,97

4.1.7. Межосевое расстояние

После принятия стандартной длины ремня $L_{\rm p}$ рассчитываем окончательное межосевое расстояние, мм:

$$a = \frac{2L_{p} - \pi(d_{2} + d_{1}) + \sqrt{[2L_{p} - \pi(d_{2} - d_{1})]^{2} - 8(d_{2} - d_{1})^{2}}}{8}$$
(4.9)

$$a = \frac{2 \cdot 1120 - \pi (160 + 125) + \sqrt{[2 \cdot 1120 - \pi (160 - 125)]^2 - 8(160 - 125)^2}}{8} = 335,71 \text{ mm}$$

4.1.8. Коэффициент, учитывающий длину ремня,

 $C_{\rm L} = f(L_{\rm p}, \, ceчeниe \, peмня)$ (таблица 2.2.6).

4.1.9. Угол обхвата ремнем меньшего шкива, град (таблица 2.2.3):

$$\alpha_{1} = 180^{\circ} - 57^{\circ} \frac{(d_{2} - d_{1})}{a}.$$

$$\alpha_{1} = 180^{\circ} - 57^{\circ} \frac{(160 - 125)}{335,71} = 174,1^{\circ}$$
(4.10)

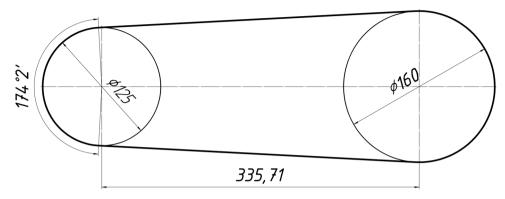


Рисунок 4.4 — Основные расчетные размеры ременной передачи

4.1.10. Скорость ремня, м/с

$$V = \frac{\pi d_1 n_1}{(60 \cdot 10^3)}. (4.11)$$

4.1.11. Число ремней передачи, шт:

$$z = \frac{P_1 C_p}{P_0 C_L C_\alpha C_k},\tag{4.12}$$

где $P_{\rm o}$ – мощность, передаваемая одним ремнем, кВт.

 $P_{\rm o} = f$ (сечение ремня, V) (таблица 2.2.7 или 2.2.8);

 C_k — коэффициент, учитывающий число ремней в передаче (таблица 2.2.5). Предварительно можно принять C_k =1,0, а потом уточнить. z — целое число (таблица 2.2.1).

4.1.12. Сила, нагружающая валы передачи, Н:

$$F = 2F_o \sin(\frac{\alpha_1^{\circ}}{2}), \qquad (4.13)$$

где $F_o = \frac{0.5F_t}{\phi_{_{\mathrm{T}}}}$ – предварительное натяжение ремня, H

$$F_{t} = \frac{2 \cdot 10^{3} T_{1}}{d_{1}}$$
 — окружное усилие, Н

 $\phi_{\text{\tiny T}} = (0,45...0,55) - коэффициент тяги.$

Для передач с периодическим контролем натяжения ремня $F_{\rm max} \approx 1.3 F$.